Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Is College Worth It For Me?

Beliefs, Access to Funding, and Inequality in Higher Education Outcomes

Sergio Barrera University of Minnesota

ion			
С			

Motivati

00000

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Motivation

- Gaps bachelor's attainment (BA) for high achievers (top quartile ASVAB AFQT).
 - Race: White 64%; Black 59%; Hispanic 52%.
 - HH Net Worth: Top Tercile 71%; Bottom Tercile 42%.
 - Parent Education: Bachelors 80%; High school or less 42%.

Motivation	
00000	

Data & Patterns

Economic Model

Model Estimation

Main Results

Motivation

- Gaps bachelor's attainment (BA) for high achievers (top quartile ASVAB AFQT).
 - Race: White 64%; Black 59%; Hispanic 52%.
 - HH Net Worth: Top Tercile 71%; Bottom Tercile 42%.
 - Parent Education: Bachelors 80%; High school or less 42%.
- Role of credit constraints, rising tuition, and funding well studied. (Lochner & Monge Naranjo 2012, Dynarski 2003, Carneiro & Heckman 2002).
- Recent work suggests important role for information frictions.

(Dynarski, Michelmore, Libassi, & Owen 2021; Hoxby & Turner 2015; Stinebrickner & Stinebrickner 2012; Bettinger, Long, Oreopoulos, & Sanbonmatsu. 2012).

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Information Frictions

• Systematic differences in beliefs regarding college success or ability.

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Information Frictions

- Systematic differences in beliefs regarding college success or ability.
- Why beliefs differ by demographic group?

-Different exposure to college educated adults or peers that provide guidance. (Hoxby and Avery 2012)

-Uncertainty regarding ability to perform well in presence of shocks.

(DeLuca, Papageorge, Boselovic, Gershenson, Gray, Nerenberg, Sausedo, & Young 2021; Evans, William, Kearney, Perry, & Sullivan 2020)

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Information Frictions

- Systematic differences in beliefs regarding college success or ability.
- Why beliefs differ by demographic group?

-Different exposure to college educated adults or peers that provide guidance. $_{\rm (Hoxby\ and\ Avery\ 2012)}$

-Uncertainty regarding ability to perform well in presence of shocks.

(DeLuca, Papageorge, Boselovic, Gershenson, Gray, Nerenberg, Sausedo, & Young 2021; Evans, William, Kearney, Perry, & Sullivan 2020)

Why information frictions important?
 -Generate inequality but also mismatch, growth, and suggests less costly policies.
 (Hsieh, Hurst, Klenow, Jones 2019)

Data & Patterns

Economic Model

Model Estimation

Main Results

Research Question

- 1. To what extent do information frictions generate mismatch in higher education across demographic groups?
 - Measured by changes in BA with complete information.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Research Question

- 1. To what extent do information frictions generate mismatch in higher education across demographic groups?
 - Measured by changes in BA with complete information.

2. How much do differences in beliefs about own success (ability) explain BA gaps across demographic groups, for high ability youth?

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Research Question

- 1. To what extent do information frictions generate mismatch in higher education across demographic groups?
 - Measured by changes in BA with complete information.

- 2. How much do differences in beliefs about own success (ability) explain BA gaps across demographic groups,for high ability youth?
- 3. Which policy counterfactual is more effective at decreasing overall gaps in BA?
 - Targeted info and funding only to high ability low SES.
 - Free college for all.
 - Better info for everyone.

Motivation 000000	Data & Patterns 000000	Economic Model 000000	Model Estimation	Main Results
		Strategy		

- Estimate a standard dynamic discrete education choice model, where
 - Grades and returns to college depend on latent ability type.
 - Credit constrained agents know funding available and returns by type.

Motivation 000000	Data & Patterns 000000	Economic Model 000000	Model Estimation	Main Results
		Strategy		

- Estimate a standard dynamic discrete education choice model, where
 - Grades and returns to college depend on latent ability type.
 - Credit constrained agents know funding available and returns by type.
 - * But agent's don't know objective type probability, instead have subjective belief.

Motivation	Data & Patterns	Economic Model	Model Estimation	Main Results
000000	000000	000000	00000000	
		Strategy		

- Estimate a standard dynamic discrete education choice model, where
 - Grades and returns to college depend on latent ability type.
 - Credit constrained agents know funding available and returns by type.
 - * But agent's don't know objective type probability, instead have subjective belief.
- **Objective Type Probability:** Externally, econometrician can estimate using education and labor market outcomes.
 - Leverage human capital scores as measures of type.

Motivation	Data & Patterns	Economic Model	Model Estimation	Main Results
000000	000000	000000	00000000	
		Strategy		

- Estimate a standard dynamic discrete education choice model, where
 - Grades and returns to college depend on latent ability type.
 - Credit constrained agents know funding available and returns by type.
 - * But agent's don't know objective type probability, instead have subjective belief.
- **Objective Type Probability:** Externally, econometrician can estimate using education and labor market outcomes.
 - Leverage human capital scores as measures of type.
- **Subjective Type Probability:** Internally, estimate using model since agents use beliefs for decisions.
 - Leverage survey beliefs of college outcomes as noisy measure for model beliefs.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Answer to Research Question:

- 1. Information frictions lead to significant mismatch for all groups and ability types.
 - Low ability types too optimistic, over investment.
 - High ability types too pessimistic, under investment.

Data & Patteri 000000 Economic Model

Model Estimation

Main Results

Answer to Research Question:

- 2. Beliefs role generating BA gaps varies across groups of high ability type. Relative to high-SES White youth, beliefs explain
 - 49% of overall Hispanic gap, Statistically Significant .
 - 38% of overall low-SES gap, Statistically Significant.
 - 33% of overall Black gap, Not Statistically Significant.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Answer to Research Question:

- 3. Targeted info and funding policy to high ability low SES.
 - Most effective at closing overall gaps (25-42%).
 - Decreases mismatch (30%).
 - Potentially less costly.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Contribution to the literature

1. Structural Education Models

 $\star\,$ Relax rational expectations prior using data and model to estimate prior.

Heckman, Cunha, & Navarro 2005; Navarro & Zhou 2017; Arcidiacono, Aucejo, Maurel & Ransom 2016 .

Data & Patterns

Economic Model

Model Estimation

Main Results

Contribution to the literature

1. Structural Education Models

* Relax rational expectations prior using data and model to estimate prior.

Heckman, Cunha, & Navarro 2005; Navarro & Zhou 2017; Arcidiacono, Aucejo, Maurel & Ransom 2016 .

2. Main Finding

* Document beliefs role in high ability inequality, policy effects on several measures.

Data & Patterr 000000 Economic Model

Model Estimation

Main Results

Contribution to the literature

1. Structural Education Models

* Relax rational expectations prior using data and model to estimate prior.

Heckman, Cunha, & Navarro 2005; Navarro & Zhou 2017; Arcidiacono, Aucejo, Maurel & Ransom 2016 .

2. Main Finding

* Document beliefs role in high ability inequality, policy effects on several measures.

3. Empirical Literature

Document background correlated to beliefs, beliefs correlated to education.
 Dynarski, Libassi, Michelmore & Owen 2018; Hoxby & Turner 2012, Bettinger, Long, Oreopoulos, & Sanbonmatsu 2012,
 Stinebrickner & Stinebrickner 2012; 2014a; Wiswall & Zafar 2015, DeLuca, Papageorge, Boselovic, Gershenson, Gray, Nerenberg,
 Sausedo, & Young 2021

Motivation 000000	Data & Patterns ●00000	Economic Model	Model Estimation	Main Results
		Data		

- Discuss data characteristics.
- Discuss empirical patterns to be interpreted by model.

Data & Patterns 00000 Economic Model

Model Estimation

Main Results

Data Description

• Use NLSY97, US cohort born 1980-1984, over-samples Black, Hispanic.

Data & Patterns 00000 Economic Model

Model Estimation

Main Results

Data Description

- Use NLSY97, US cohort born 1980-1984, over-samples Black, Hispanic.
 - 1. See high school student. Observe,
 - background (parent education, wealth, race, ethnicity, peer plans).
 - Human capital measures (cognitive-ASVAB scores, non-cognitive risky behavior).
 - Self reported belief about enrolling in college.

Data & Patterns 00000 Economic Model

Model Estimation

Main Results

Data Description

- Use NLSY97, US cohort born 1980-1984, over-samples Black, Hispanic.
 - 1. See high school student. Observe,
 - background (parent education, wealth, race, ethnicity, peer plans).
 - Human capital measures (cognitive-ASVAB scores, non-cognitive risky behavior).
 - Self reported belief about enrolling in college.
 - 2. See if they go to college or not. If enroll, observe
 - Funding for college (family, college, government financial aid).
 - Performance (GPA, obtain a bachelor's degree).

Data & Patterns 00000 Economic Model

Model Estimation

Main Results

Data Description

- Use NLSY97, US cohort born 1980-1984, over-samples Black, Hispanic.
 - 1. See high school student. Observe,
 - background (parent education, wealth, race, ethnicity, peer plans).
 - Human capital measures (cognitive-ASVAB scores, non-cognitive risky behavior).
 - Self reported belief about enrolling in college.
 - 2. See if they go to college or not. If enroll, observe
 - Funding for college (family, college, government financial aid).
 - Performance (GPA, obtain a bachelor's degree).
 - 3. See their labor market earnings over lifecycle.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Data Patterns that Inform the Model

- Controlling for important variables (human capital, access to resources, etc.)
 - 1. Optimism about own college outcomes strongly related to background.
 - 2. More optimism about college outcomes strongly related to actual outcomes.
 - 3. Less optimistic youth less likely to persist with medium grades.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Fact 1: Optimism related to background

Table: Measured Beliefs

	(OLS)
VARIABLES	Prob Enroll (pct points)
Avg Parent Education	2.56***
	(0.39)
Pct Peers College Plans About 25%	7.42
	(5.43)
Pct Peers College Plans About 50%	9.62*
	(5.02)
Pct Peers College Plans About 75%	13.79***
	(5.04)
Pct Peers College Plans More than 90%	16.56***
	(5.08)
HH Net Worth (\$100,000s)	1.014***
	(0.281)
ASVAB AFQT	00.22***
	(0.03)
Geography, Birth Year, Race, Ethnicity, Gender	Yes
Non Cognitive	Yes
Observations	2,133

• All else equal, student parents bachelor's degree more optimistic by about 12 percentage points than student parents high school diploma.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Fact 2: Optimism related to outcomes

VARIABLES	(OLS) Ever Enrolled	(OLS) Bachelors Attained	(OLS) Complete College
Prob Enroll (10 pct point)	0.032***	0.022***	0.022***
	(0.003)	(0.003)	(0.005)
Avg Parent Education	0.0292***	0.0375***	0.0427***
-	(0.0048)	(0.0056)	(0.0070)
HH Net Worth (\$100,000s)	0.01**	0.02***	0.01*
	(0.004)	(0.005)	(0.005)
ASVAB AFQT	0.0055***	0.0057***	0.0035***
	(0.0004)	(0.0004)	(0.0006)
College GPA			0.1803***
			(0.0152)
Total Govt/Inst Aid (\$1000s)			0.0058**
			(0.0027)
Total Fam Aid (\$1000s)			0.0075**
			(0.0035)
Geography, Birth Year, Race, Ethnicity, Gender	Yes	Yes	Yes
Non Cognitive, Student Loans	Yes	Yes	Yes
Observations	2,133	2,133	1,467

Table: College Outcomes

• All else equal, student that's 10 percent more optimistic 3 percentage points more likely to enroll and 2 percentage points more likely to obtain bachelor's.

Data & Patterns

Economic Model

Model Estimation

Main Results

Fact 3: Belief and Grade Interaction

Table 3: Non Continuation Interacted with GPA			
	(OLS)		
VARIABLES	Exit College		
Prob Enroll (10 pct point)	0.008		
	(0.00543)		
GPA 2.0-3.0	-0.1513*		
	(0.0859)		
GPA > 3.0	-0.3431***		
	(0.0929)		
Prob Enroll X GPA 2.0-3.0	-0.026**		
	(0.01021)		
Prob Enroll X GPA > 3.0	-0.023**		
	(0.01092)		
Parent Education	-0.0179**		
	(0.0089)		
Household Net Worth (\$100,000s)	-0.003		
(, , , , , , , , , , , , , , , , , , ,	(0.0007)		
Geography, Birth Year, Race, Ethnicity, Gender	Yes		
Cognitive and Non cognitive Controls	Yes		
Student Aid and Loans	Yes		
Observations	1,028		
R-squared	0.2576		

• All else equal, student that's 10 percent more optimistic 3 percentage points less likely to exit after medium grades.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- 1. Provide overview of model.
- 2. Discuss model predictions.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Ingredients

• Dynamic discrete choice, finite horizon.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Dynamic discrete choice, finite horizon.
- Three stages: enroll/work, continue/exit, work and pay off debt.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Dynamic discrete choice, finite horizon.
- Three stages: enroll/work, continue/exit, work and pay off debt.
- Stricter borrowing limit in school, net tuition $f_{t,i}$ heterogeneous from funding.

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

- Dynamic discrete choice, finite horizon.
- Three stages: enroll/work, continue/exit, work and pay off debt.
- Stricter borrowing limit in school, net tuition $f_{t,i}$ heterogeneous from funding.
- Latent type $\tau_i \in {\tau_l, \tau_h}$, determines post college earnings $w_c(\tau_i)$, and utility $\mu(\tau_i)$, probability $\pi(g_i, \tau_i)$ of GPA $g_i \in {g_l, g_m, g_h}$.

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

- Dynamic discrete choice, finite horizon.
- Three stages: enroll/work, continue/exit, work and pay off debt.
- Stricter borrowing limit in school, net tuition $f_{t,i}$ heterogeneous from funding.
- Latent type $\tau_i \in {\tau_l, \tau_h}$, determines post college earnings $w_c(\tau_i)$, and utility $\mu(\tau_i)$, probability $\pi(g_i, \tau_i)$ of GPA $g_i \in {g_l, g_m, g_h}$.
- τ_i is such that $w_c(\tau_h) > w_c(\tau_l)$, $\mu(\tau_h) > \mu(\tau_l)$, and $\pi(g_h, \tau_h) > \pi(g_h, \tau_l)$.

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

- Dynamic discrete choice, finite horizon.
- Three stages: enroll/work, continue/exit, work and pay off debt.
- Stricter borrowing limit in school, net tuition $f_{t,i}$ heterogeneous from funding.
- Latent type $\tau_i \in {\tau_l, \tau_h}$, determines post college earnings $w_c(\tau_i)$, and utility $\mu(\tau_i)$, probability $\pi(g_i, \tau_i)$ of GPA $g_i \in {g_l, g_m, g_h}$.
- τ_i is such that $w_c(\tau_h) > w_c(\tau_l)$, $\mu(\tau_h) > \mu(\tau_l)$, and $\pi(g_h, \tau_h) > \pi(g_h, \tau_l)$.
- Allow for returns to some college w_s , and bachelor's $w_c(\tau)$ independent of type.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Ingredients: Information Friction

- Objective probability $P_{true,i}$ that $\tau_i = \tau_h$.
 - Determines type realization, grade realization, and earnings.
 - Known by econometrician, correlated with human capital measures.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Ingredients: Information Friction

- Objective probability $P_{true,i}$ that $\tau_i = \tau_h$.
 - Determines type realization, grade realization, and earnings.
 - Known by econometrician, correlated with human capital measures.
- Agents have subjective belief P_i that $\tau_i = \tau_h$.
 - GPA g_i provide signal of type, update belief to $P'_i = P'(g_i, P_i)$.
 - Agent's perception of college returns, education decisions depend on P_i , and P'_i .
 - NLSY Prob Enrollment noisy measure of prior P_i.

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Model Ingredients: Information Friction

- Objective probability $P_{true,i}$ that $\tau_i = \tau_h$.
 - Determines type realization, grade realization, and earnings.
 - Known by econometrician, correlated with human capital measures.
- Agents have subjective belief P_i that $\tau_i = \tau_h$.
 - GPA g_i provide signal of type, update belief to $P'_i = P'(g_i, P_i)$.
 - Agent's perception of college returns, education decisions depend on P_i , and P'_i .
 - NLSY Prob Enrollment noisy measure of prior P_i.
- No restriction that $P_i = P_{true,i}$.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Belief Updating

• Beliefs updated after realizing GPA g_k for k = l, m, h by Bayes Rule.

$$P'(g_k,P) = rac{P \cdot \pi(g_k, au_h)}{P \cdot \pi(g_k, au_h) + (1-P) \cdot \pi(g_k, au_l)}$$

• Where
$$\pi(g_k, \tau_h) = Prob(g_k | \tau = \tau_h)$$

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Three Stage problem

• Stage 1: t = 1 Enrollment High school senior *i* college decision.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Stage 1: t = 1 Enrollment High school senior *i* college decision.
 - Knows labor market w_n , w_s , net costs $f_{t,i}$, shock $\vec{\varepsilon}_{1,i}$, distribution $\vec{\varepsilon}_{2,i}$.
 - She know $w_c(\tau), \mu(\tau)$, but uncertain about being $\tau_i = \tau_h$, but has belief P_i .

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Stage 1: t = 1 Enrollment High school senior *i* college decision.
 - Knows labor market w_n , w_s , net costs $f_{t,i}$, shock $\vec{\varepsilon}_{1,i}$, distribution $\vec{\varepsilon}_{2,i}$.
 - She know $w_c(\tau), \mu(\tau)$, but uncertain about being $\tau_i = \tau_h$, but has belief P_i .
 - Agent makes enrollment decision then borrows $b_{2,i}$. Stage 1 Value Function

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Stage 1: t = 1 Enrollment High school senior *i* college decision.
 - Knows labor market w_n , w_s , net costs $f_{t,i}$, shock $\vec{\varepsilon}_{1,i}$, distribution $\vec{\varepsilon}_{2,i}$.
 - She know $w_c(\tau), \mu(\tau)$, but uncertain about being $\tau_i = \tau_h$, but has belief P_i .
 - Agent makes enrollment decision then borrows $b_{2,i}$. Stage 1 Value Function
- Stage 2: t = 2 Continuation College student *i* continuation decision.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Stage 1: t = 1 Enrollment High school senior *i* college decision.
 - Knows labor market w_n , w_s , net costs $f_{t,i}$, shock $\vec{\varepsilon}_{1,i}$, distribution $\vec{\varepsilon}_{2,i}$.
 - She know $w_c(\tau), \mu(\tau)$, but uncertain about being $\tau_i = \tau_h$, but has belief P_i .
 - Agent makes enrollment decision then borrows $b_{2,i}$. Stage 1 Value Function
- Stage 2: t = 2 Continuation College student *i* continuation decision.
 - After experience, realizes shock $\vec{\varepsilon}_{2,i}$, gains info GPA g_i , updates $P'(g_i, P_i)$.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

- Stage 1: t = 1 Enrollment High school senior *i* college decision.
 - Knows labor market w_n , w_s , net costs $f_{t,i}$, shock $\vec{\varepsilon}_{1,i}$, distribution $\vec{\varepsilon}_{2,i}$.
 - She know $w_c(\tau), \mu(\tau)$, but uncertain about being $\tau_i = \tau_h$, but has belief P_i .
 - Agent makes enrollment decision then borrows $b_{2,i}$. Stage 1 Value Function
- Stage 2: t = 2 Continuation College student *i* continuation decision.
 - After experience, realizes shock $\vec{\varepsilon}_{2,i}$, gains info GPA g_i , updates $P'(g_i, P_i)$.
 - Then given $P'(g_i, P_i)$, $f_{2,i}$, $\vec{\varepsilon}_{2,i}$ makes continue decision then borrows $b_{3,i}$. Stage 2 Value Function

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

- Stage 1: t = 1 Enrollment High school senior *i* college decision.
 - Knows labor market w_n , w_s , net costs $f_{t,i}$, shock $\vec{\varepsilon}_{1,i}$, distribution $\vec{\varepsilon}_{2,i}$.
 - She know $w_c(\tau), \mu(\tau)$, but uncertain about being $\tau_i = \tau_h$, but has belief P_i .
 - Agent makes enrollment decision then borrows $b_{2,i}$. Stage 1 Value Function
- Stage 2: t = 2 Continuation College student *i* continuation decision.
 - After experience, realizes shock $\vec{\varepsilon}_{2,i}$, gains info GPA g_i , updates $P'(g_i, P_i)$.
 - Then given $P'(g_i, P_i)$, $f_{2,i}$, $\vec{\varepsilon}_{2,i}$ makes continue decision then borrows $b_{3,i}$. Stage 2 Value Function
- Stage 3: t = 3, ..., 24 Work Graduate works, pays debt, learns τ_i and if college worth it. Stage 3 Worker's Problem

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Model Implications

- More optimism and lower costs lead to more school.
 - **Enroll Decision**: Holding all else constant probability of enrollment is weakly increasing in P_i , and weakly decreasing in $f_{t,i}$, t = 1, 2.
 - **Continue decision**: Holding all else constant continuation is weakly increasing in P_i , weakly decreasing in $f_{2,i}$.
- Cross sectional differences in $P_{true,i}$ affect exit through grades.
 - **Exit response to grades**: Holding all else constant, if g_h provides a better signal for $\tau_i = \tau_h$ then continuation probability is weakly greater with g_h than with g_m or, g_l . Continuation

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Estimation

- 1. Discuss external procedure.
- 2. Discuss internal procedure.
- 3. Discuss model fit.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Estimation:

• Main objects of interest, objective $P_{true,i}$ and subjective P_i that $\tau_i = \tau_h$.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Estimation:

- Main objects of interest, objective $P_{true,i}$ and subjective P_i that $\tau_i = \tau_h$.
- <u>External Estimate</u> *P*_{true,i} by observing earnings, grades, human capital scores. Additionally estimate:
 - Funding by race, gender, ethnicity, wealth, parental education OLS. Funding by Demographic
 - Earnings $w_n, w_s, w_c(\tau)$, grade distribution $\pi(g, \tau)$, finite mixture model.

(Hai & Heckman 2017)

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Estimation:

- Main objects of interest, objective $P_{true,i}$ and subjective P_i that $\tau_i = \tau_h$.
- <u>External Estimate</u> *P*_{true,i} by observing earnings, grades, human capital scores. Additionally estimate:
 - Funding by race, gender, ethnicity, wealth, parental education OLS. Funding by Demographic
 - Earnings $w_n, w_s, w_c(\tau)$, grade distribution $\pi(g, \tau)$, finite mixture model. (Hai & Heckman 2017)
- **Internally Estimate** *P_i* by matching data decisions and model decision via indirect inference. Additionally estimate
 - Tuition sticker price, with financial assistance gives $f_{t,i}$.
 - Non-pecuniary utility parameters $\mu(\tau)$ and $\vec{\varepsilon_{t,i}}$ t= 1,2.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Preset Parameters

Table: Preset Parameters

Parameter	Set Value	Description
β	0.94	Discount rate
σ	2.0	Coefficient of Rel Risk Aversion
(1 + r)	β^{-1}	Interest rate
Т	24	Number 2 year periods lifecycle
$B_{c,1}$	\$16,600	College Borrowing limit pd 1
$B_{c,1} \\ B_{c,2}$	\$35,600	College Borrowing limit pd 2
b_0	\$0.00	Starting Assets

• Set student loan limit to average student loan 2000-2004.

(Abbot Gallipoli, Meghir, and Violante 2016)

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

External Estimation Continued

- Get $P_{true,i}$ by assuming following provide info on $\tau_i \in {\tau_l, \tau_h}$,
 - 1. Vector of human capital measures and college GPA g_i . $\vec{Z_i}$. Hum Cap Grades

2. Average log earnings w_{i,s_i} given school s_i . Earnings School

Data & Patterns

Economic Model

Model Estimation

Main Results

External Estimation Continued

- Get $P_{true,i}$ by assuming following provide info on $\tau_i \in {\tau_l, \tau_h}$,
 - 1. Vector of human capital measures and college GPA g_i . $\vec{Z_i}$. Hum Cap Grades 2. Average log earnings w_{i,s_i} given school s_i . Earnings School
- Given τ_i and s_i likelihood of observing (\vec{Z}_i, w_i, g_i) is given by

$$\phi(\vec{Z}_i, w_{i,s}, g_i; \tau_i, \vec{X}_i, s_i)$$

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

External Estimation Continued

- Get $P_{true,i}$ by assuming following provide info on $\tau_i \in {\tau_l, \tau_h}$,
 - 1. Vector of human capital measures and college GPA g_i . $\vec{Z_i}$. Hum Cap Grades 2. Average log earnings w_{i,s_i} given school s_i . Earnings School
- Given τ_i and s_i likelihood of observing (\vec{Z}_i, w_i, g_i) is given by

$$\phi(\vec{Z}_i, w_{i,s}, g_i; \tau_i, \vec{X}_i, s_i)$$

• Need share of $\tau_i = \tau_h$ by demographic characteristics \vec{X}_i given by

(10)
$$\lambda(\tau_h; \vec{X}_i) = Prob(\tau = \tau_h | \vec{X}_i) = \frac{exp(\vec{X}_i \vec{\beta}_p)}{1 + exp(\vec{X}_i \vec{\beta}_p)}$$

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

External Estimation Continued

• Then solving for maximum likelihood

$$\max \sum_{i} \ln[\lambda(\tau_h; \vec{X}_i)\phi(\vec{Z}_i, w_i, g_i; \tau_h, \vec{X}_i, s_i) + (1 - \lambda(\tau_h; \vec{X}_i))\phi(\vec{Z}_i, w_i, g_i; \tau_h, \vec{X}_i, s_i)]$$

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

External Estimation Continued

• Then solving for maximum likelihood

$$\max \sum_{i} \ln[\lambda(\tau_h; \vec{X}_i)\phi(\vec{Z}_i, w_i, g_i; \tau_h, \vec{X}_i, s_i) + (1 - \lambda(\tau_h; \vec{X}_i))\phi(\vec{Z}_i, w_i, g_i; \tau_h, \vec{X}_i, s_i)]$$

• Provides estimate of objective $P_{true,i}$ used to simulate grades and counterfactuals

$$P_{ ext{true},i} = Prob(au_i = au_h | ec{X}_i, ec{Z}_i, w_i, g_i, s_i) \propto \lambda(au_h; ec{X}_i) imes \phi(ec{Z}_i, w_i, g_i; au_h, X_i, s)$$

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

External Estimation Continued

• Then solving for maximum likelihood

$$\max \sum_{i} \ln[\lambda(\tau_h; \vec{X}_i)\phi(\vec{Z}_i, w_i, g_i; \tau_h, \vec{X}_i, s_i) + (1 - \lambda(\tau_h; \vec{X}_i))\phi(\vec{Z}_i, w_i, g_i; \tau_h, \vec{X}_i, s_i)]$$

• Provides estimate of objective $P_{true,i}$ used to simulate grades and counterfactuals

$$P_{ ext{true},i} = Prob(au_i = au_h | ec{X}_i, ec{Z}_i, w_i, g_i, s_i) \propto \lambda(au_h; ec{X}_i) imes \phi(ec{Z}_i, w_i, g_i; au_h, X_i, s)$$

- Also provides
 - 1. Value of $w_n, w_s, w_c(\tau)$, through $\mathbb{E}[w_{i,s}|\tau]$. Predicted Earnings
 - 2. Conditional grade probability $\pi(g, \tau_i)$. Grades by Type
 - 3. Share of τ_h by demographics $\lambda(\tau_h, \vec{X_i})$. Fraction High

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Internally Estimated Parameters

• Main object, distribution of subjective P_i being τ_h

 $P = \gamma_{p,0} + \gamma_{p,b} \mathsf{NLSY} \text{ Belief} + \gamma_{p,h} \mathsf{Par } \mathsf{HSD} + \gamma_{p,s} \mathsf{Par } \mathsf{SCOL} + \gamma_{p,s} \mathsf{Par } \mathsf{Bach} + \sigma_p \eta_p$

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Internally Estimated Parameters

• Main object, distribution of subjective P_i being τ_h

 $P = \gamma_{p,0} + \gamma_{p,b}$ NLSY Belief + $\gamma_{p,h}$ Par HSD + $\gamma_{p,s}$ Par SCOL + $\gamma_{p,s}$ Par Bach + $\sigma_p \eta_p$

- Additionally, given preset, external parameters, estimate
 - 1. Location scale Type 1 EV shocks: race, first gen. $(\vec{\varepsilon_t})$.
 - 2. Non pecuniary utility by τ_i , $\mu_c(\tau_i)$.
 - 3. Sticker price of tuition, $tuit_t$ to get $f_{t,i} = tuit_t fund_i$.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Internally Estimated Parameters

• Main object, distribution of subjective P_i being τ_h

 $P = \gamma_{p,0} + \gamma_{p,b}$ NLSY Belief + $\gamma_{p,h}$ Par HSD + $\gamma_{p,s}$ Par SCOL + $\gamma_{p,s}$ Par Bach + $\sigma_p \eta_p$

- Additionally, given preset, external parameters, estimate
 - 1. Location scale Type 1 EV shocks: race, first gen. $(\vec{\varepsilon_t})$.
 - 2. Non pecuniary utility by τ_i , $\mu_c(\tau_i)$.
 - 3. Sticker price of tuition, $tuit_t$ to get $f_{t,i} = tuit_t fund_i$.
- Via indirect inference solve for vector Γ 16 parameters minimizes difference in 17 OLS coefficients.

$$\min_{\Gamma}(\widetilde{eta}(\Gamma)-ec{eta})'W(\widetilde{eta}(\Gamma)-ec{eta})$$

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Internally Estimated Target Moments

• Target enrollment.

 $\begin{aligned} \textit{Enroll} &= \beta_{E,0} + \beta_{E,B}\textit{HighNLSYBelief} + \beta_{E,F_2}\textit{T2}(\textit{Finaid}) + \beta_{E,F_3}\textit{T3}(\textit{Finaid}) \\ &+ \beta_{E,1G}\textit{FirstGen} + \beta_{E,W}\textit{White} + \beta_{E,H}\textit{Hisp} + \varepsilon_{E,i} \end{aligned}$

• Target continuation.

 $Continue_{i} = \beta_{C,0} + \beta_{C,g_{m}} \mathbf{1}(g_{i} = g_{m}) + \beta_{C,g_{h}} \mathbf{1}(g_{i} = g_{h}) + \beta_{C,F_{2}} T2(fund_{i}) + \beta_{C,F_{2}} T3(fund_{i}) + \vec{\beta}_{C,PB} Pedu_{hsg} + \vec{\beta}_{C,PB} Pedu_{bach} + \beta_{C,W} White + \beta_{C,H} Hisp + \varepsilon_{C,i}$

• Belief parameters identified through $\beta_{E,B}, \beta_{C,g_m}, \beta_{C,g_h}$. Target Fit Key Parameter Results

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Model Fit with Estimated Parameters

• Matches bachelor's attainment by demographic group, and college non continuation by GPA.

(Model Fit) Demographic BA Non Cont GPA

Data & Patterr 000000 Economic Model

Model Estimation

Main Results

Model Fit with Estimated Parameters

• Matches bachelor's attainment by demographic group, and college non continuation by GPA.

Model Fit Demographic BA Non Cont GPA

• For main results focus on difference in BA, between White high SES vs Black, Hispanic, low SES.

Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Model Estimation

- 1. To what extent do information frictions generate mismatch in higher education across demographic groups?
- 2. How much do differences in beliefs about success (ability) type play in generating BA gaps across groups for high ability youth?
- 3. Which policy is more effective and efficient at narrowing overall inequality?

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 1: Information Frictions and Mismatch

• Mismatch from information friction.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 1: Information Frictions and Mismatch

- Mismatch from information friction.
 - Average beliefs P_i by type τ_i wrong with respect to objective probability $P_{true,i}$. Pred vs Belief

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 1: Information Frictions and Mismatch

- Mismatch from information friction.
 - Average beliefs P_i by type τ_i wrong with respect to objective probability $P_{true,i}$. Pred vs Belief
 - Significant mismatch for considered groups.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 2: How Much Beliefs Explain Gaps

- Estimation results show:
 - High ability-high SES white youth, more optimistic, more funding. Difference Causal Variables

Data & Patterr 000000 Economic Model

Model Estimation

Main Results

Question 2: How Much Beliefs Explain Gaps

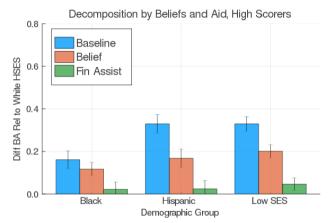
- Estimation results show:
 - High ability-high SES white youth, more optimistic, more funding. Difference Causal Variables
- **Research Question 2:** How much do differences in beliefs about success (ability) type play in generating BA gaps across groups for high ability youth?
 - Sequentially set beliefs, then funding to average White high SES for high type.

Data & Patterr 000000 Economic Model

Model Estimation

Main Results

Question 2: How Much Beliefs Explain Gaps


- Estimation results show:
 - High ability-high SES white youth, more optimistic, more funding. Difference Causal Variables
- **Research Question 2:** How much do differences in beliefs about success (ability) type play in generating BA gaps across groups for high ability youth?
 - Sequentially set beliefs, then funding to average White high SES for high type.
 - Also see what role differences in funding play in generating inequality.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Decomposition: High ability type

• Significant role of beliefs for Hispanic, low-SES, funding significant for all three.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 3: Policy Counterfactuals

• Which policy is more effective and efficient at decreasing overall gaps in BA?

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 3: Policy Counterfactuals

- Which policy is more effective and efficient at decreasing overall gaps in BA?
 - Efficiency: College Mismatch proportion who change BA decision with knowledge of type.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Question 3: Policy Counterfactuals

- Which policy is more effective and efficient at decreasing overall gaps in BA?
 - Efficiency: College Mismatch proportion who change BA decision with knowledge of type.
 - Cost Effectiveness: Benefit to cost ratio, average net benefit per recipient.

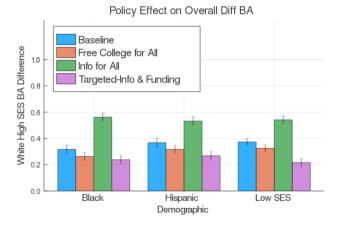
Data & Pattern 000000 Economic Model

Model Estimation

Main Results

Question 3: Policy Counterfactuals

- Which policy is more effective and efficient at decreasing overall gaps in BA?
 - Efficiency: College Mismatch proportion who change BA decision with knowledge of type.
 - Cost Effectiveness: Benefit to cost ratio, average net benefit per recipient.
- Policies:
 - 1. Targeted info and funding only to high ability low SES.
 - 2. Free college for all (Keep family funding same, set tuition to zero).
 - 3. Better info for everyone (Give everyone $P_{true,i}$).


Data & Patterns

Economic Mode

Model Estimation

Main Results

Effect of Policy on Overall Inequality

- Free College for All and targeted policy decrease inequality.
- Better information for all increases inequality.

Data & Patterns

Model Estimation

Main Results 00000000000

Mismatch Policy

Policy	% Pop Mismatched	% Pop Mismatched	% Pop Mismatched
	Overall	High-Type	Low-Type
Baseline	27.1 %	21.3 %	5.8 %
	(1.834)	(1.505)	(1.222)
Free College For All	30.5%	21.5 %	<mark>9.1 %</mark>
	(1.107)	(1.296)	(1.395)
Better Info for All	4.4 % (0.300)	4.1 % (0.284)	0.3 % (0.086)
Targeted: Info and Funding	19.1%	13.3 %	5.9%
	(1.214)	(0.946)	(1.201)

. . - c = 0

Motivation	Data & Patterns	Economic Model	Model Estimation
000000	000000	000000	0000000

Main Results

Cost Effectiveness

Table 11: Cost Effectiveness

Policy	Benefit-Cost Ratio	Average Net Benefit Recipient
Free College For All	13.78	\$260,000
Targeted: Info and Funding	(1.386) 31.27 (2.014)	(28,433) \$750,000 (50,984)

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Main Findings

- 1. Beliefs: Significant 38-49 % of bachelor's gap; Hispanic, low SES high type.
 - Can't reject a belief effect of zero for Black high type.
 - However financial resources significant for all (45 -50%).
- 2. Targeted subsidies and info most efficient at closing overall gaps.
 - Close gaps between 25-42% depending on demographic group.
 - Efficient: decrease mismatch by decreasing underinvestment.
 - Cost Effective, if cost is less then \$490,000 per beneficiary.
 - Universal policies exhibit equity/efficiency trade off.

Data & Patterns 000000 Economic Model

Model Estimation

Main Results

Conclusion

- Information frictions lead to underinvestment in higher education for high ability youth from underrepresented backgrounds.
- Providing info and funding effective for decreasing inequality and increasing efficiency, two examples
 - HAIL- recruiting letter and promised funding (Cost:\$ 10 student).

(Dynarski, Michelmore, Libassi & Owen 2021)

• Stay the Course - assignment of case managers (Cost: \$4384).

(Evans, Perry, Kearney & Sullivan 2020)

• Still important role for human capital, may interact with parents beliefs.

(List, Pernaudet & Suskind 2021)

Model Ingredients

Estimation Results

Main Results

Patterns in the Data: Full Sample

Table: Summary Statistics by Parent Education

VARIABLES	(1) All	(2) Lt 12	(3) 12	(4) 13-15	(5) 16 +
Enrolled in College	0.717	0.447	0.614	0.814	0.944
Bachelors or More	0.301	0.0787	0.208	0.359	0.544
Hispanic	0.116	0.285	0.092	0.062	0.056
Black	0.146	0.191	0.212	0.114	0.082
Avg Parent Edu	13.02	10.10	12.00	13.77	16.00
HH Net Worth (\$1000s)	185.8	53.53	123.8	201.7	375.8
Pct Peers ColPlan	66.5	58.2	62.3	69.7	75.2
Prob Enroll	0.751	0.572	0.713	0.812	0.882
Prob Degree	0.777	0.633	0.691	0.840	0.002
FIOD Degree	0.111	0.033	0.091	0.040	0.917
College GPA	2.65	2.21	2.62	2.68	2.98
Total Govt/Inst Aid (\$1000s)	2.3	2.40	1.68	1.93	2.29
Total Fam Aid (\$1000s)	1.64	0.42	0.85	1.64	3.01
ASVAB AFQT	54.73	32.47	49.53	60.13	75.08
Ever Stole	54.73	32.47	49.53	0.0750	0.042
Ever Violence	0.161	0.233	0.176	0.147	0.042
Ever Sex before 15	0.181	0.235	0.210	0.147	0.090
Sample Size	2133	586	493	736	318

Data

Model Ingredients

Estimation Results

Main Results

Patterns in the Data: Full Sample

Table: Summary Statistics by Race Ethnicity

VARIABLES	(1) All	(2) White	(3) Hispanic	(4) Black
Enrolled in College	0.717	0.740	0.626	0.670
Bachelors or More	0.301	0.336	0.171	0.222
Parent Edu Lt 12	0.220	0.158	0.541	0.288
Parent Edu 12	0.216	0.202	0.176	0.313
Parent Edu 13-15	0.388	0.434	0.200	0.302
Parent Edu 16+	0.176	0.205	0.083	0.098
Avg Parent Edu	13.02	13.43	11.15	12.37
HH Net Worth (\$1000s)	185.8	226.4	80.68	56.04
Pct Peers ColPlan	66.5	68.7	60.8	68.5
Prob Enroll	0.751	0.758	0.734	0.732
Prob Degree	0.777	0.793	0.679	0.767
College GPA	2.65	2.79	2.41	2.14
Total Govt/Inst Aid (\$1000s)	2.3	1.96	1.65	2.71
Total Fam Aid (\$1000s)	1.64	1.92	0.96	0.60
ASVAB AFQT	54.73	61.20	40.32	32.15
Ever Stole	0.0671	0.0608	0.0943	0.0779
Ever Violence	0.161	0.141	0.165	0.265
Ever Sex before 15	0.182	0.145	0.186	0.375
Sample Size	2133	1188	404	541

Model Ingredient

Estimation Results

Main Results

Sample Selection

Table: Observations Lost at Each Stage of Sample Selection

Criteria	(1) Observations Lost	(2) Observations Remaining
Total NLSY97		8984
Drop missing parent education and HH net worth	2542	6442
Drop missing belief probability of degree/enroll and continuation	1450	4992
Drop missing educational attainment/college enrollment	1201	3791
Drop missing ASVAB math verbal scores	587	3204
Drop missing adverse behavior young age	676	2528
Drop missing race/ethnicity, year of birth, census region, urban/rural	91	2437
Drop missing high school peers with college plans	27	2410
Drop missing financial aid or GPA while enrolled	152	2258
Drop missing average lifetime earnings	125	2133

Patterns in the Data: Beliefs

	(1)	(0)
VARIABLES	(1) Pct Chance Deg by 30	(2) Prob Enroll
VARIABLES	Fet Chance Deg by 30	FIOD ENFOIL
Parent Edu	0.0267***	0.0282***
	(0.0046)	(0.0058)
HH Net Worth	0.0001***	0.0001**
	(0.0000)	(0.0000)
ASVAB AFQT	0.0022***	0.0022***
	(0.0004)	(0.0004)
Peers Coll Plan About 25%	0.0812	0.1289*
	(0.0709)	(0.0766)
Peers Coll Plan About 50%	0.1110*	0.1314*
	(0.0671)	(0.0692)
Peers Coll Plan About 75%	0.1662**	0.1562**
	(0.0670)	(0.0695)
Peers Coll Plan more than 90%	0.2117***	0.1954***
	(0.0675)	(0.0691)
Hispanic	0.0435	0.1174**
	(0.0268)	(0.0323)
Black	0.0978***	0.1071***
	(0.0246)	(0.0312)
Geography & Birth Year Controls	Yes	Yes
Non Cognitive Controls	Yes	Yes
Observations	1.143	1.139
R-squared	0.2614	0.2304
	errors in parentheses	2.2001

Table: Measured Beliefs

*** p<0.01. ** p<0.05. * p<0.1

Estimation Results

Main Results

Patterns in the Data: Financial Assistance

	(1)	(2)	(3)	(4)
VARIABLES	Any Family Aid	Total Fam Aid	Any Govt/Inst Aid	Total Govt/Inst Aid
Parent Edu	0.0346***	0.1854***	-0.0006	-0.0793
	(0.0072)	(0.0607)	(0.0078)	(0.0751)
HH Net Worth	0.0003***	0.0050***	-0.0002***	0.0001
	(0.0001)	(0.0009)	(0.0001)	(0.0007)
ASVAB AFQT	0.0030***	0.0114**	0.0022***	0.0216***
	(0.0006)	(0.0045)	(0.0006)	(0.0067)
Female	0.0322	-0.0604	0.0574**	0.2054
	(0.0249)	(0.2464)	(0.0276)	(0.3452)
Hispanic	0.0198	0.5455*	0.0995**	-0.5875
	(0.0403)	(0.3057)	(0.0441)	(0.5116)
Black	-0.0134	0.0212	0.1932***	0.9796* [*]
	(0.0393)	(0.2425)	(0.0386)	(0.4450)
Geography & Birth Year Controls	Yes	Yes	Yes	Yes
Non Cognitive Controls	Yes	Yes	Yes	Yes
Observations	1,467	929	1,467	940
R-squared	0.1478	0.2416	0.0503	0.0379

Table: Financial Assistance

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

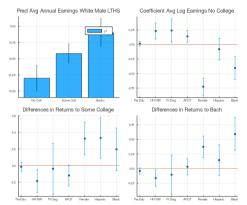
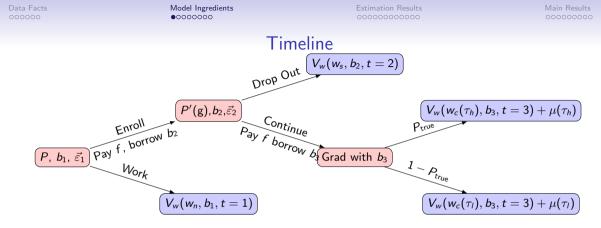
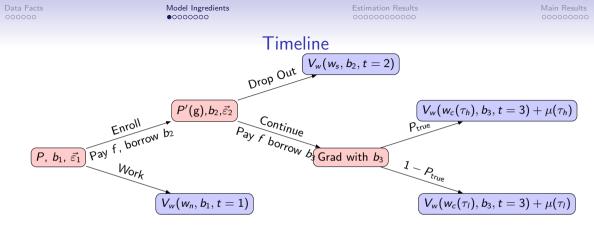
Belief Regression

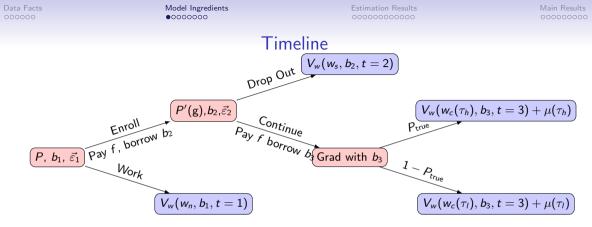
Model Ingredients

Estimation Results

Main Results

Patterns in the Data: Earnings


Figure: Earnings by EDU and Differences in Log Returns to School

• Stage 1, (t=1): Begin belief P, asset b_1 , taste shocks $\vec{\varepsilon_1}$; enroll or work and earn w_n .

- Stage 1, (t=1): Begin belief P, asset b_1 , taste shocks $\vec{\varepsilon_1}$; enroll or work and earn w_n .
- Stage 2 (t=2): Realize GPA g, Update to P'(g), debt b₂, taste shocks ε₂ ; continue or work and earn w_s.

- Stage 1, (t=1): Begin belief P, asset b_1 , taste shocks $\vec{\varepsilon_1}$; enroll or work and earn w_n .
- Stage 2 (t=2): Realize GPA g, Update to P'(g), debt b₂, taste shocks *e*₂ ; continue or work and earn w_s.
- Stage 3, (t=3,...,T): Complete College with debt b_3 ,Prob P_{true} earn $w_c(\tau_h)$, (1- P_{true}) earn $w_c(\tau_l)$.

Estimation Results

Main Results

Stage 1: Enrollment Decision

• Begin with belief P, net tuition f_1 , know f_2 , assets b_1 , and non-pecuniary utility $\vec{\varepsilon_1} = (\varepsilon_{c,1}, \varepsilon_{w,1})$.

(3)
$$V_1(P, f_1, f_2, b_1, \vec{\varepsilon_1}) = \max\{V_w(w_n, b_1, 1) + \varepsilon_{w,1}, V_{c,1}(P, f_1, f_2, b_1) + \varepsilon_{c,1}\}$$

s.t.

$$V_{c,1}(P, f_1, f_2, b_1) = \max_{b_2 \ge -\tilde{B}_{s,1}} \left[u(Rb_1 - f_1 - b_2) + \beta \mathbb{E}_{g,\varepsilon}(V_2(P'(g, P), f_2, b_2, \vec{\varepsilon_2})) | P \right]$$

•
$$\varepsilon_{c,1}, \varepsilon_{w,1}$$
 are iid Type 1 Extreme Value and $ilde{B}_1^s > ilde{B}_1(w)$

Estimation Results

Main Results

Stage 2: Continue/Exit Decision

• Begin with belief P', net tuition f_2 , debt b_2 , and non-pecuniary utility $\vec{\varepsilon}_2 = (\varepsilon_{c,2}, \varepsilon_{w,2})$.

(5)
$$V_2(P', f_2, b_2, \vec{\varepsilon}_2) = \max\{V_w(w_s, b_2, 2) + \varepsilon_{w,2}, V_{c,2}(P', f_2, b_2) + \epsilon_{c,2}\}$$

s.t.

$$V_{c,2}(P', f_2, b_2) = \max_{b_3 \ge -\tilde{B}_{s,2}} [u(Rb_2 - f_2 - b_3) + \beta(P'[V_w(w_c(\tau_h), b_3) + \mu(\tau_h)] + (1 - P')[V_w(w_c(\tau_l), b_3) + \mu(\tau_l)])]$$

• $\varepsilon_{c,2}, \varepsilon_{w,2}$ are iid Type 1 Extreme Value and $\tilde{B}_2^s > \tilde{B}_2(w)$

Model Ingredients

Estimation Results

Main Results

Stage 3: Workers Problem

• Work problem depends on age t.

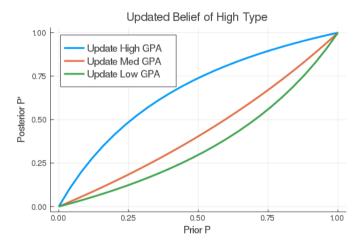
(1)
$$V_w(w, b, t) = \max_{\{b_n \ge -\tilde{B}_n(w)\}_{n=t}^T} \sum_{n=t}^T \beta^{n-t} u(w + Rb_n - b_{n+1})$$

• Per period utility is CRRA

(2)
$$u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$$

• Borrowing constraints

$$ilde{\mathcal{B}}_{\mathcal{T}-n}(w) = \sum_{m=1}^n w(1+r)^{-m} \quad ext{for } n \geq 1 \qquad ilde{\mathcal{B}}_{\mathcal{T}} = 0$$

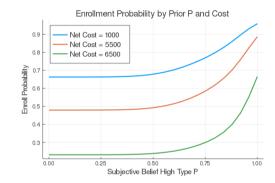


Model Ingredients

Estimation Results

Main Results

Update Graph



Model Ingredients

Estimation Results

Main Results

Model Predictions

• Probability of enrollment increasing in optimism P_i and funding (decreasing $f_{t,i}$).

Model Ingredients

Estimation Results

Main Results

Model Predictions

• Probability of continuation increasing in optimism P_i and better grade realization.

Model Ingredients

Estimation Results

Main Results

Model Predictions

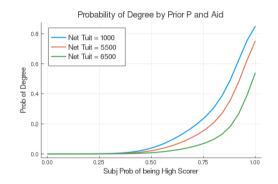


Figure: Model predicted probability of Bachelor's attainment, enrollment and completion, by Net Tuition and Prior Belief of being "successful"

Estimation Results
O000000000

Main Results

External: Human Capital and Grades

- Use $j \in 1, \ldots, 7$ measures of human capital that are functions of τ_i .
 - Cognitive human capital: continuous ASVAB math and verbal knowledge scores.
 - Non-cognitive human capital: binary risky behavior, violence, theft, sex young ages.

$$Z_{i,j}^* = \alpha_{z,j,0} + \alpha_{z,j,\tau} \mathbf{1}(\tau_i = \tau_h) + \varepsilon_{z,j} \quad j \in \{1, \dots, 7\}$$

$$Z_{i,j} = egin{cases} Z_{i,j}^* & ext{if } Z_{i,j} ext{ is continuous} \ 1(Z_{i,j}^*>0) & ext{if } Z_{i,j}, ext{ is binary} \end{cases}$$

• Conditional probability of $g \in \{g_l, g_m, g_h\}$ given τ .

$$\pi(g,\tau) = \frac{\exp(\gamma_{g,0} + \gamma_{g,\tau} \mathbf{1}(\tau_i = \tau_h))}{\sum_{k=l,m,h} \exp(\gamma_{k,0} + \gamma_{k,\tau} \mathbf{1}(\tau_i = \tau_h))}$$

Estimation Results

Main Results

External: Earnings and Schooling Selection

• Earnings given s_i and τ

 $\ln w_{i,s}^* = \mu_{w,0} + \mu_{w,1} 1 (12 < s_i < 16) + 1 (s_i \ge 16) (\mu_{w,2} + \mu_{w,h} 1 (\tau_i = \tau_h)) + \varepsilon_{w,s}$

• Enrollment given demographics

$$1(12 < s_i < 16) = 1(\vec{eta}_E \vec{X}_i + \varepsilon_E \geq 0)$$

• Continuation given demographics and grades

$$1(s_i \geq 16|s_i > 12) = 1(\vec{\beta_C}\vec{X_i} + \beta_{C,g_m}1(g = g_m) + \beta_{C,g_h}1(g = g_h) + \varepsilon_C \geq 0)$$

Estimation Results

Main Results

Financial Assistance by Demographics Estimate

Table 19: Funding by						
	OLS	OLS				
VARIABLES	log Family Aid	log Gov Coll Aid				
Intercept	-0.963	3.67***				
	(0.637)	(0.722)				
Parent Edu	0.347***	0.0455				
	(0.045)	(0.0513)				
HH Net Worth (\$1000s)	0.0032***	-0.0012***				
	(0.0004)	(0.00046)				
Black	-0.718***	1.093***				
	(0.217)	(0.246)				
Hispanic	-0.144	0.311				
	(0.258)	(0.292)				
Female	0.182	0.587				
	(0.171)	(0.194)				
Birth Yr 1981	0.329	0.0436				
	(0.245)	(0.278)				
Birth Yr 1983	0.114	-0.0238				
	(0.247)	(0.280)				
Birth Yr 1984	0.415*	0.161				
	(0.245)	(0.277)				
	. /	. , ,				
Observations	1,467	1,467				
R-squared	0.1554	0.0345				
	Standard errors in parentheses					
*** p<0.01, ** p<0.05, * p<0.1						

Model Ingredients

Estimation Results

Main Results

Finite Mixture Model Type Share-Selection

Table 20: Prob by Demographic: FMM					
	Logit	Logit	Logit		
VARIABLES	Uncond Prob High	Prob Enroll	Prob Continue		
Intercept	-1.029***	-0.991***	-3.367 ***		
	(0.306)	(0.163)	(0.333)		
Parent HS	0.930***	0.610***	0.460***		
	(0.286)	(0.132)	(0.212)		
Parent Some Coll	1.296***	1.407***	0.756***		
	(0.341)	(0.151)	(0.204)		
Parent Bach	2.635***	2.58***	1.159***		
	(0.663)	(0.272)	(0.217)		
HH Net Worth Tercile 2	0.358*	0.396***	0.337*		
	(0.185)	(0.129)	(0.172)		
HH Net Worth Tercile 3	1.044***	1.063***	0.637***		
	(0.348)	(0.169)	(0.185)		
Hispanic	-0.655***	0.307* [*]	-0.040		
	(0.201)	(0.145)	(0.189)		
Black	-1.488***	0.441	0.354**		
	(0.467)	(0.139)	(0.164)		
Female	0.224	0.629***	0.043		
	(0.249)	(0.105)	(0.119)		
GPA Med	(,	(,	2.167***		
			(0.240)		
GPA High			1.475***		
-			(0.239)		
Observations	2,133	2,133	1,467		

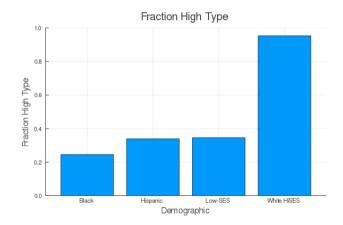
Estimation Results

Main Results

Finte Mixture Model Human Capital

	Table 21: Cogn	itive and Non Cognitiv	e Measurement: FN	MM
	Linear	Linear	Linear	Linear
VARIABLES	ASVAB Math	ASVAB Arithmetic	ASVAB Word	ASVAB Paragrap
	Knowledge	Reasoning	Knowledge	Comprehension
Intercept	-9.048***	-11.077***	-12.970***	-10.231***
	(1.176)	(1.097)	(1.104)	(1.149)
High Type	14.877***	13.710***	13.968***	14.449***
0 //	(2.295)	(2.126)	(2.155)	(2.228)
Variance	6.988***	7.05***	6.479***	6.077***
	(0.503)	(0.428)	(0.470)	(0517)
Observations	2,133	2,133	2,133	2,133
	Probit	Probit	Probit	
	Ever Sex bf 15	Ever Violence	Ever Stole gt 50	
Intercept	-0.488***	-0.864***	-1.454***	
	(0.204)	(0.142)	(0.115)	
High Type	-0.646	-0.209	-0.128	
	(0.400)	(0.260)	(0.206)	
Observations	2,133	2,133	2,133	

Finite Mixture Model Grades-Earnings


Table 22: G	Grades and Earnings: FN	ИМ
	Logit	Logit
VARIABLES	Prob GPA (2.0-3.0)	Prob GPA (3.0-4.0)
Intercept	0.767***	-0.315
intercept	(0.110)	(0.225)
High Type	0.565***	1.939***
ingii iype	(0.177)	(0.352)
Observations	1.467	1,467
Observations	1,407	1,407
	Linear	
	log Avg Earnings	
Intercept	9.879***	
intercept	(0.038)	
Enrolled	0.423***	
Emolica	(0.043)	
Bachelors	0.124*	
	(0.067)	
Bachelor*High Type	0.256***	
0 71	(0.075)	
Std Error Unobserved Shock	0.83***	
	(0.0223)	
Observations	2,133	

Model Ingredients

Estimation Results

Main Results

Fraction High Type

Estimation Results

Identification

Parameter	Parameter Description	Target	Target Description	
$\gamma_{p,0}$	Belief Constant	$\beta_{C,0}, \beta_{C,G_m}, \beta_{C,G_h}$	Constant, Coefficient med, high GPA on continuation	
$\mu_c(\tau)$	Type dependent non pecuniary utility	$\beta_{C,0},\beta_{C,G_m},\beta_{C,G_h}$	Constant, Coefficient med, high GPA on continuation	
$\gamma_{\rho,b}$	Belief: Meas Belief	$\beta_{E,B}$	Coefficient Meas Belief on enrollment	
$\gamma_{\rho,h}$	Belief: Parent Education HSD	$\beta_{C,PH}$	Coefficient Pedu _{hsg} on continuation	
$\gamma_{\rho,s}$	Belief: Parent Education SCOL	$\beta_{C,PS}$	Coefficient Pedu _{scol} on continuation	
$\gamma_{P,c}$	Belief: Parent Education Bach	$\beta_{C,PB}$	Coefficient Pedu _{bach} on continuation	
$\mu_{d,0}$	Non-Pec Util: Black 1st Gen Col Stud	$\beta_{E,0}+\beta_{E,1G}$	Constant and <i>FirstGen</i> Coefficient on enrollment	
$\mu_{d,C}$	Non-Pec Util: Col Educated Parents	$\beta_{E,0}$	Constant Coefficient on enrollment	
$\mu_{d,W}$	Non Pecun Util: White	$\beta_{E,W}, \beta_{C,W}$	White Coefficient on enrollment,continuation	
⊭а,н	Non Pecun Util: Hispanic	$\beta_{E,H}, \beta_{C,H}$	Hisp Coefficient on enrollment,continuation	
tuit ₁	Tuition Pd 1	$\beta_{E,F_2},\beta_{E,F_3}$	T2(Finaid), T3(Finaid) Coefficient on enrollment	
tuit ₂	Tuiton Pd 2	$\beta_{C,F_2},\beta_{C,F_3}$	T2(Finaid), T3(Finaid) Coefficient on continuation	

Estimation Results

Main Results

Targeted Moments: Indirect Inference Targets

Table 22: Indirect Inference OLS Targets				
	(1)	(2)	(3)	(4)
VARIABLES	Enrolled Data	Enrolled Sim	Continue Data	Continue Sim
	0.376	0.007	-0.068	0.010
Intercept		0.287		-0.012
	(0.033)	(0.065)	(0.0502)	(0.032)
High NLSY Belief	0.215	0.201		
	(0.019)	(0.027)		
Funding T2	0.150	0.154	0.072	0.075
	(0.024)	(0.027)	(0.034)	(0.009)
Funding T3	0.297	0.301	0.095	0.135
	(0.026)	(0.035)	(0.0403)	(0.014)
First Gen	-0.129	-0.034		
	(0.021)	(0.017)		
Parent HSD			0.077	0.061
			(0.0390)	(0.021)
Parent SCOL			0.128	0.150
			(0.0379)	(0.028)
Parent Bach			0.216	0.235
			(0.0478)	(0.029)
White	0.116	0.067	0.015	0.034
	(0.026)	(0.038)	(0.036)	(0.018)
Hispanic	0.107	0.036	-0.016	0.018
	(0.031)	(0.045)	(0.044)	(0.021)
GPA Med	(0.001)	(0.040)	0.214	0.159
GIA med			(0.0348)	(0.015)
GPA High			0.3724	0.424
GFA High			(0.0371)	(0.025)
			(0.0371)	(0.025)

Estimation Results

Main Results

Results

Table: Key Internal Parameter Results

Parameter	Table 23: Key Internal Parameter Results Description	Estimate
$\gamma_{p,0}$	Belief Constant	0.0057
10,0		(0.0133)
$\gamma_{p,b}$	Belief: Meas Belief	0.88***
10,0		(0.0103)
$\gamma_{p,h}$	Belief: P-Edu HSD	0.026**
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(0.0116)
$\gamma_{p,s}$	Belief: P-Edu SCOL	0.028***
		(0.0103)
$\gamma_{p,c}$	Belief: P-Edu Bach	0.055***
		(0.0102)
$\mu_{d,0}$	Non Pecun Util: Black 1st Gen Col Stud	-0.000056
		(0.000044)
$\mu_{d,C}$	Non Pecun Util: Col Edu Parents	0.00004
		(0.000037)
$\mu_{d,W}$	Non Pecun Util: White	0.000017
		(0.000028)
$\mu_{d,H}$	Non Pecun Util: Hispanic	0.000023
		(0.000034)
$\mu_c(\tau_h)$	Non Pecun Util high	0.00052***
		(0.000065)
$\mu_c(\tau_l)$	Non Pecun Util high	-0.0028***
		(0.00031)
tuit ₁	Tuition Pd 1	\$7583.61***
		(120.5)
tuit ₂	Tuiton Pd 2	\$6972.45***
		(16.05)

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Model Ingredient

Estimation Results

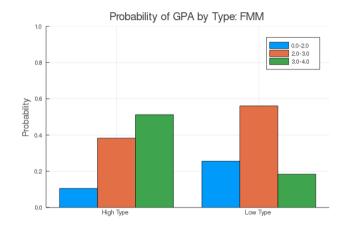
Main Results

Results: Average Earnings

Table: External Estimation Results: Average Earnings

Parameter	Estimated Annual Value	Description
	too 504	
Wn	\$29, 584	Non College Earnings
Ws	\$45,026	Some College Earnings
$w_s(au_l)$	\$51,277	Low type college earnings
$w_s(\tau_h)$	\$65,841	High type college earnings

 Table 5: Expected value of earnings from Finite Mixture Model by education realization.


 Estimation Strategy

Model Ingredients

Estimation Results

Main Results

Estimation Results

Estimation Strategy

Model Ingredients

Estimation Results

Main Results

Model Fit: Degree Attainment, Enrollment

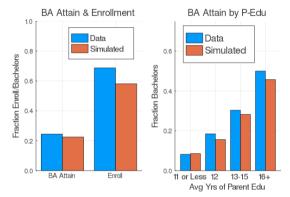


Figure: Fit of the Estimated Model: Enrollment, BA attainment, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.

Model Ingredient

Estimation Results

Main Results

Model Fit: Degree Attainment by Demographic Group

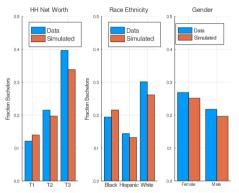


Figure: Fit of the Estimated Model: BA attainment by demographics, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.

Model Ingredients

Estimation Results

Main Results

Model Fit: Non Continuation by Grade

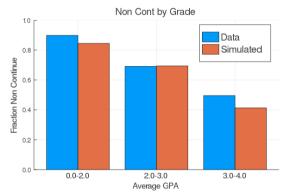


Figure: Fit of the Estimated Model: Non Continuation by GPA level, where Blue comes from the NLSY97 and Orange is simulated from the estimated quantitative model.

Model Ingredients

Estimation Results

Main Results

Predicted Type Data vs Estimated Belief

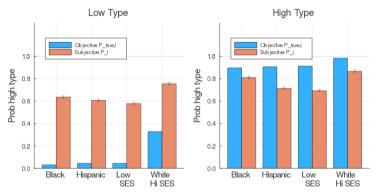


Figure: Compares the mean FMM estimate of prob high-scorer vs the mean subjective belief of being a high-scorer by scorer type.

Model Ingredients

Estimation Results

Main Results

Mismatch by scorer type

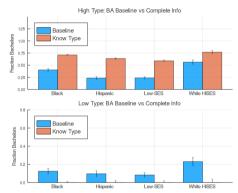
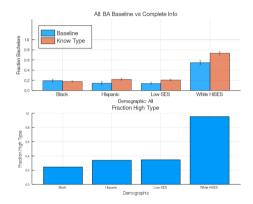


Figure: Shows difference in bachelor's attainment under baseline model and under scenario where youth know their true type with certainty.



Model Ingredients

Estimation Results

Main Results

Mismatch Aggregate

Policy Effect

Estimation Results

Main Results

Difference in Causal Variables

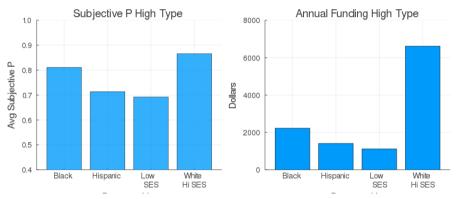


Figure: Estimated variables relating to causal mechanism by demographic group. Total financial assistance is the sum of family assistance and govt/college aid.

Estimation Results

Main Results

Decomposition Continued

Table 8:	Mechanism [Decomposition: I	High Type
Demographic	(1) Baseline	(2) Beliefs Equal	(3) Fin Assist Equal
Black			
Difference	15.8*** (4.24)	10.4 (3.19)	2.6** (3.32)
% Explained		33 % (20.4)	50%*** (11.22)
Hispanic			
Difference	33*** (4.39)	16.9*** (4.29)	2.2*** (3.85)
% Explained		49 %*** (13.67)	45%*** (6.34)
Low SES			
Difference	32.8*** (3.39)	20.5*** (3.13)	5.7*** (2.96)
% Explained		38%*** (10.97)	45%*** (6.17)
White High SES Bachelor's attain	56		
Boot st **		ard errors in par * p<0.05, * p<0	

Main Results

Policy Effect on Inequality

	Table	9: Policy Effect on Ov	erall Inequality	
Demographic	Baseline	Free College For All for All	Better Info to All to All	Targeted: Info & Free Info & Free
Black				
Difference	35.4*** (3.11)	28.95** (3.16)	60.22*** (3.10)	26.5*** (3.18)
% Change in Gap Relative to Baseline		-18.3** % (8.59)	70%*** (8.43)	-25.2 % *** (8.65)
Hispanic				
Difference	40.5*** (3.45)	33.6** (2.94)	57.42*** (3.23)	29.02*** (3.33)
% Change in Gap Relative to Baseline		-16.9 %** (7.04)	<mark>42%***</mark> (7.74)	-28.26%*** (7.96)
Low SES				
Difference	41.1*** (2.69)	35.05** (2.71)	58.2*** (2.95)	23.9*** (3.08)
% Change in Gap Relative to Baseline		-14.7%** (6.38)	41.5%*** (6.95)	-41.8%*** (7.27)
White High SES Bachelor's Attainment	54.8			
Relative to Baseline White High SES	54.8 Rc	-14.7%**	41.5%*** (6.95) parentheses	-41.8%***

*** p<0.01, ** p<0.05, * p<0.1